



السبت, 8. يوليو 2023

المسألة رقم 1 حدد جميع الأعداد الصحيحة المؤلفة 1>n>1 التي تحقق الخاصية التالية: إذا كانت  $d_1,d_2,\ldots,d_k$  هي كل القواسم  $1\leqslant i\leqslant k-2$  لكل  $d_{i+1}+d_{i+2}$  يقسم العدد  $1\leqslant i\leqslant k-2$  لكل  $d_{i+1}+d_{i+2}$  بقسم العدد  $1\leqslant i\leqslant k-2$  الموجبة للعدد  $1\leqslant i\leqslant k-2$  الموجبة الموج

المسألة رقم 2 ليكن ABC مثلث حاد الزوايا بحيث AB < AC. لتكن  $\Omega$  هي الدائرة المحيطة بالمثلث ABC. لتكن S هي نقطة منتصف القوس S في S الذي يحوي S. العمود من S على S يقابل S في S ويقابل S مرة أخرى في S المستقيم المار بالنقطة S موازياً S يقابل المستقيم S في S لتكن الدائرة المحيطة بالمثلث S هي S لتكن S تقابل S مرة أخرى في S أثبت أن المماس لS عند S يقابل المستقيم S في نقطة تقع على المنصف الداخلي لزاوية S أثبت أن المماس لS عند S يقابل المستقيم S في نقطة تقع على المنصف الداخلي لزاوية S

المسألة رقم 3 لكل عدد صحيح  $k\geqslant 2$  محدد جميع المتتابعات اللانهائية للأعداد الصحيحة الموجبة  $a_1,a_2,\ldots$  التي يوجد لها دالة كثيرة  $c_0,c_1,\ldots,c_{k-1}$  على الصورة  $c_0,c_1,\ldots,c_k$ 

 $n\geqslant 1$  کل عدد صحیح



الأحد, 9. يوليو 2023

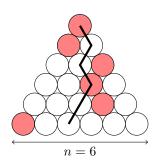
Language: Arabic

المسألة رقم 4 لتكن  $x_1, x_2, \dots, x_{2023}$  أعداد حقيقية موجبة مختلفة مثنى مثنى بحيث

$$a_n = \sqrt{(x_1 + x_2 + \dots + x_n)\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right)}$$

 $a_{2023}\geqslant 3034$  أثبت أن  $n=1,2,\ldots,2023$  هو عدد صحيح لكل

المسألة رقم 5 ليكن n عدد صحيح موجب. يتألف المثلث الياباني من  $i+2+\cdots+n$  دوائر مرتبة على شكل مثلث متطابق الأضلاع بحيث لكل  $i=1,2,\ldots,n$  يتألف i على i من الدوائر بالضبط، واحدة فقط منها ملونة بالأحمر. يتألف "مسار نينجا" في المثلث الياباني من سلسلة من n من الدوائر تم الحصول عليها بالبدء من الصف العلوي، ثم الانتقال بشكل متكرر من دائرة إلى إحدى الدائرتين الموجودتين مباشرة أسفلها والانتهاء في الصف السفلي. فيما يلي مثال للمثلث الياباني عند n=6 موضح به مسار نينجا الذي يحتوي على دائرتين حمراوين.



أوجد بدلالة n أكبر عدد k بحيث في كل مثلث ياباني يوجد مسار نينجا يحتوي على الأقل k من الدوائر الحمراء.

 $ABA_1 = A_1C$  بحيث ABC مثلث متطابق الأضلاع. ولتكن  $A_1, B_1, C_1$  نقاط داخل المثلث ABC بحيث ABC بحيث ABC المسألة رقم 6 ليكن  $AC_1 = C_1B$  بحيث  $AC_1 = C_1B$  بحيث  $AC_1 = C_1B$  بحيث بالمسألة رقم 6 المثلث بالمشارك بالم

$$\angle BA_1C + \angle CB_1A + \angle AC_1B = 480^{\circ}.$$

ليكن  $BC_1$  و $BC_1$  نتقاطعان في  $A_2$ ، وليكن  $AC_1$  و $AC_1$  نتقاطعان في  $AC_1$  واثبت أنه إذا  $BC_1$  اثبت أنه إذا كان المثلث  $AC_1$  مختلف الأضلاع، فإن الدوائر المحيطة للمثلثات الثلاثة  $AC_1$ ,  $AC_1$  و  $BC_1$  نتقاطعان في نقطتين.