MAT100XG

微分方程式

高木 悟

【授業の概要と目的(何を学ぶか) / Outline and objectives】

微分方程式で表されるさまざまな現象を数学的に記述し、考察するために必要な知識を、具体的な例を通して計算・論証を行うことで身につけることを目標とする。基本的な常微分方程式の解法を理解し、その実行に必要な計算力を身につける。特に、理工学の様々な場面で登場する1変数の未知関数の常微分方程式を中心にして、解法を解説する。

【到達目標 / Goal】

- (1) 定数変化法を用いて、非斉次1階微分方程式の一般解を求めることができる.
- (2) 2階線形微分方程式の解の構造を理解し、一般解を求めることができる.
- (3) 連立微分方程式を解くことができる.

【この授業を履修することで学部等のディプロマポリシーに示されたどの能力を習得することができるか(該当授業科目と学位授与方針に明示された学習成果との関連】

ディプロマポリシーのうち、「DP1」と「DP2」と「DP4」に関連

【授業の進め方と方法 / Method(s)】

講義ののち問題演習の時間を取り, 理解を深めてもらう.

【授業計画 / Schedule】

□ / No.	テーマ / Theme	内容 / Contents
# 1	微分方程式とは	微分方程式とはどのようなものか説明する. また, 微分方程式を解くのに必要な微分と積分の基本計算を復習する.
# 2	変数分離形	変数分離形の微分方程式の解法を紹介する.
# 3	同次形	同次形の微分方程式の解法を紹介する.
# 4	非斉次1階線形微 分方程式	非斉次1階線形微分方程式を定数変化法で解く方法を紹介する.
# 5	さまざまな1階線 形微分方程式	ベルヌーイ, リッカチ, ラグランジュ, クレーローの各1階線形微分 方程式について説明する.
# 6	1階完全微分方程 式	1階完全微分方程式について説明する.
# 7	2階線形微分方程 式の解の構造	2階線形微分方程式の解がどのような構造になっているか説明する.
# 8	定数係数斉次2階 線形微分方程式	定数係数斉次2階線形微分方程式の解法について説明する.
# 9	変数係数斉次2階 線形微分方程式	変数係数斉次2階線形微分方程式の解法について説明する.
# 1 0	非斉次2階線形微 分方程式	非斉次2階線形微分方程式の解法について説明する.
# 1 1	連立微分方程式	連立微分方程式の解法について説明する.
#12	境界値問題・初期 値問題	微分方程式の教会地問題と初期値問題について説明する.
#13	微分方程式の応用 例	微分方程式がどのように利用されているか説明する.
#14	理解度の確認(試 験と講評)	授業時間内に試験を実施する. また, 試験後に学習内容を振り返る.

【授業時間外の学習(準備学習・復習・宿題等) / Work to be done outside of class (preparation, etc.)】

前回の復習をし、宿題をすること.

【テキスト(教科書) / Textbooks】

牧野他著「例からはじめる微分方程式」牧野書店, 2012

【参考書 / References】

(1) 高木他著「理工系のための基礎数学」培風館, 2015

授業コード	H9264
Class code	
年度	2018
Year	
学部・研究科	理工学部
Faculty/Graduate	
school	
添付ファイル名	
Attached documents	
カテゴリー <理工学部	創生科学科
>	学科専門科目
開講時期	秋学期
Term	
曜日・時限	木曜2時限
Day/Period	
キャンパス	小金井
Campus	
Notes	
科目	
Global Open	
Program	

- (2) 長谷川他著「理工系のための微分積分」培風館, 2016
- (3) 高木他著「理工系のための線形代数」培風館, 2016 これらの訂正情報は下記URLを参照のこと.

http://home.att.ne.jp/air/satorut/book/index.html

【成績評価の方法と基準 / Grading criteria】

到達目標を達成できているかどうか,「80点満点の試験」と「20点満点の平常時の課題」で評価し,合計得点60点以上を合格とする.

【学生の意見等からの気づき / Changes following student comments】

毎回授業開始時に簡単に前回の復習(主に宿題の解説)をするが、各自それまでにしっかりと復習して理解しておくこと.

【学生が準備すべき機器他 / Equipment student needs to prepare】

通常の授業では機器を使わないが、授業アンケート回答時にはノートPCあるいはタブレット等が必要となる(事前に連絡する).

【その他の重要事項 / Others】

- (1) 教員免許状(中学校「数学」および高等学校「数学」) 取得のための(解析学)必修科目である.
- (2) 授業の前後に講師室あるいは授業教室にて質問を受け付ける.
- (3) 授業の進捗状況については、下記ウェブサイトから当該科目の授業のページを参照のこと.

http://home.att.ne.jp/air/satorut/lec/index.html

閉じる / Close